TOPIC
Transportation, Communication, Electrical Engineering, Mathematical Reasoning, and Problem Solving

KEY QUESTION
How do you generate a numeric display circuit to display any number for a countdown clock that will be used with Metro Transit?

LEARNING GOALS
Students will:
• Create a countdown clock using two types of light bulbs that can display the numbers from 0-9.
• Create diagrams for each number 0-9 and provide instructions for how to make any letter or number.
• Make decisions about whether or not a solution meets the needs of a client
• Communicate the solution clearly to the client

GUIDING DOCUMENTS
This activity has the potential to address many mathematics and science standards. Please see pages 4-7 for a complete list of mathematics and science standards.

RECOMMENDED SUPPLIES FOR ALL MODEL-ELICITING ACTIVITIES
It is recommended to have all of these supplies in a central location in the room. It is recommended to let the students know that they are available, but not to encourage them to use anything in particular.

• Overhead transparencies and transparency markers/pens, whiteboards and markers, posterboards, or other presentation tools such as a document camera.
• Calculators
• Rulers
• Markers, colored pencils, pencils
• Graph paper, lined paper
• Paper towels or tissues (for cleaning transparencies)
• Manila folders or paper clips for collecting the students’ work
• Optional: Computers with programs such as Microsoft Word and Excel

WHAT ARE MODEL-ELICITING ACTIVITIES (MEAs)?
Model-Eliciting Activities are problem activities explicitly designed to help students develop conceptual foundations for deeper and higher order ideas in mathematics, science, engineering, and other disciplines. Each task asks students to mathematically interpret a complex real-world situation and requires the formation of a mathematical description, procedure, or method for the purpose of making a decision for a realistic client. Because teams of students are producing a description, procedure, or method (instead of a one-word or one-number answer), students’ solutions to the task reveal explicitly how they are thinking about the given situation.

THE ALUMINUM BATS MEA CONSISTS OF FOUR COMPONENTS:
1) Newspaper article: Students individually read the newspaper article to become familiar with the context of the problem. This handout is on pages 8.
2) Readiness questions: Students individually answer these reading comprehension questions about the newspaper article to become even more familiar with the context and beginning thinking about the problem. This handout is on page 8.
3) Problem statement: In teams of three or four, students work on the problem statement for 45 – 90 minutes. This time range depends on the amount of self-reflection and revision you want the students to do. It can be shorter if you are looking for students’ first thoughts, and can be longer if you expect a polished solution and
well-written letter. The handouts are on pages 9-10.

4) **Process of sharing solutions:** Each team writes their solution in a letter or memo to the client. Then, each team presents their solution to the class. Whole class discussion is intermingled with these presentations to discuss the different solutions, the mathematics involved, and the effectiveness of the different solutions in meeting the needs of the client. In totality, each MEA takes approximately 2-3 class periods to implement, but can be shortened by having students do the individual work during out-of-class time. The Presentation Form can be useful and is explained on page 4 and found on page 12.

RECOMMENDED PROGRESSION OF THE COUNTDOWN CLOCK MEA

While other implementation options are possible for MEAs, it is recommended that the MEA be implemented in a cooperative learning format. Numerous research studies have proven cooperative learning to be effective at improving student achievement, understanding, and problem solving skills. In this method students will complete work individually (Newspaper article and readiness questions; as well as initial thoughts on the problem statement) and then work together as a group. This is important because brainstorming works best when students have individual time to think before working as a group. Students can be graded on both their individual and group contributions. Social skills’ discussion at the beginning of the MEA and reflection questions at the end of the MEA are also essential aspects of cooperative learning.

Social Skills (3 - 5 minutes)

Students must be taught how to communicate and work well in groups. Several social skills that are essential to group work are decision-making, asking questions, and communicating and listening. The teacher can show part of a YouTube video and discuss aspects of these skills before beginning the MEA.

Newspaper Article and Readiness Questions:

The purpose of the newspaper article and the readiness questions is to introduce the students to the context of the problem.

(10 minutes): Give the article and the questions to the students the day before for homework. Then, in the next class, discuss as a class the answers to the readiness questions before beginning to discuss the problem statement.

Problem Statement:

You may want to read the problem statement to the students and then identify as a class: a) **the client that the students are working for** and b) **the product that the students are being asked to produce**. Once you have addressed the points above, allow the students to work on the problem statement. Let the students know that they will be sharing their solution to the rest of the class. Tell students you that you will randomly pick a group member to present for each group. Tell the students that they need to make sure that everyone understands their group’s solution so they need to be sure to work together well. The group member who will present can be picked by assigning each group member a number.

Working on the Problem Statement (35-50 minutes):

Place the students in teams of three or four. Students should begin to work by sharing their initial ideas for solving the problem. If you already use teams in your classroom, it is best if you continue with these same teams since results for MEAs are better when the students have already developed a working relationship with their team members. If you do not use teams in your classroom and classroom management is an issue, the teacher may form the teams. If classroom management is not an issue, the students may form their own
teams. You may want to have the students choose a name for their team to promote unity.

Teachers’ role: As they work, your role should be one of a facilitator and observer. Avoid questions or comments that steer the students toward a particular solution. Try to answer their questions with questions so that the student teams figure out their own issues. Also during this time, try to get a sense of how the students are solving the problem so that you can ask them questions about their solutions during their presentations.

Presentations of Solutions (15-30 minutes): The teams present their solutions to the class. There are several options of how you do this. Doing this electronically or assigning students to give feedback as out-of-class work can lessen the time spent on presentations. If you choose to do this in class, which offers the chance for the richest discussions, the following are recommendations for implementation. Each presentation typically takes 3 – 5 minutes. You may want to limit the number of presentations to five or six or limit the number of presentations to the number of original (or significantly different) solutions to the MEA.

Before beginning the presentations, encourage the other students to not only listen to the other teams’ presentations but also to a) **try to understand the other teams’ solutions** and b) **consider how well these other solutions meet the needs of the client.** You may want to offer points to students that ask ‘good’ questions of the other teams, or you may want students to complete a reflection page (explanation – page 4, form – page 14) in which they explain how they would revise their solution after hearing about the other solutions. As students offer their presentations and ask questions, whole class discussions should be intermixed with the presentations in order to address conflicts or differences in solutions. When the presentations are over, collect the student teams’ memos/letters, presentation overheads, and any other work you would like to look over or assess.

ASSESSMENT OF STUDENTS’ WORK
You can decide if you wish to evaluate the students’ work. If you decide to do so, you may find the following Assessment Guide Rubric helpful:

Performance Level Effectiveness: Does the solution meet the client’s needs?

- **Requires redirection:** The product is on the wrong track. Working longer or harder with this approach will not work. The students may need additional feedback from the teacher.

- **Requires major extensions or refinements:** The product is a good start toward meeting the client’s needs, but a lot more work is needed to respond to all of the issues.

- **Requires editing and revisions:** The product is on a good track to be used. It still needs modifications, additions or refinements.

Useful for this specific data given, but not shareable and reusable OR Almost shareable and reusable but requires minor revisions:
No changes will be needed to meet the immediate needs of the client for this set of data, but not generalized OR Small changes needed to meet the generalized needs of the client.

- **Share-able or re-usable:** The tool not only works for the immediate solution, but it would be easy for others to modify and use in similar situations. OR The solution goes above and beyond meeting the immediate needs of the client.

IMPLEMENTING AN MEA WITH STUDENTS FOR THE FIRST TIME
You may want to let students know the following about MEAs:
• MEAs are longer problems; there are no immediate answers. Instead, students should expect to work on the problem and gradually revise their solution over a period of 45 minutes to an hour.

• MEAs often have more than one solution or one way of thinking about the problem.

• Let the students know ahead of time that they will be presenting their solutions to the class. Tell them to prepare for a 3-5 minute presentation, and that they may use overhead transparencies or other visuals during their presentation.

• Let the students know that you won’t be answering questions such as “Is this the right way to do it?” or “Are we done yet?” You can tell them that you will answer clarification questions, but that you will not guide them through the MEA.

• Remind students to make sure that they have returned to the problem statement to verify that they have fully answered the question.

• If students struggle with writing the letter, encourage them to read the letter out loud to each other. This usually helps them identify omissions and errors.

OBSERVING STUDENTS AS THEY WORK ON THE ALUMINUM BATS MEA
You may find the Observation Form (page 11) useful for making notes about one or more of your teams of students as they work on the MEA. We have found that the form could be filled out “real-time” as you observe the students working or sometime shortly after you observe the students. The form can be used to record observations about what concepts the students are using, how they are interacting as a team, how they are organizing the data, what tools they use, what revisions to their solutions they may make, and any other miscellaneous comments.

PRESENTATION FORM (Optional)
As the teams of students present their solutions to the class, you may find it helpful to have each student complete the presentation form on page 12. This form asks students to evaluate and provide feedback about the solutions of at least two teams. It also asks students to consider how they would revise their own solution to the Aluminum Bats MEA after hearing of the other teams’ solutions.

STUDENT REFLECTION FORM
The Student Reflection Form (page 13) is a useful way for concluding the MEA with the students. The form is a debriefing tool, and it asks students to consider the concepts that they used in solving the MEA and to consider how they would revise their previous solution after hearing of all the different solutions presented by the various teams. Students typically fill out this form after the team presentations.

STANDARDS ADDRESSED
NCTM MATHEMATICS STANDARDS

Numbers and Operations:
• Work flexibly with fractions, decimals, and percents to solve problems
• Understand and use ratios and proportions to represent quantitative relationships
• Understand the meaning and effects of arithmetic operations with fractions, decimals, and integers
• Develop and analyze algorithms for computing with fractions, decimals, and integers and develop fluency in their use
• Develop and use strategies to estimate the results of rational-number computations and judge the reasonableness of the results
• Develop, analyze, and explain methods for solving problems involving proportions, such as scaling and finding equivalent ratios
• Judge the reasonableness of numerical computations and their results

Algebra
• Represent, analyze, and generalize a variety of patterns with tables, graphs, words, and, when possible, symbolic rules
• Relate and compare different forms of representation for a relationship
• Model and solve contextualized problems using various representations, such as graphs, tables, and equations
• Use symbolic algebra to represent and explain mathematical relationships
• Identify essential quantitative relationships in a situation and determine the class or classes of functions that might model the relationships
• Draw reasonable conclusions about a situation being modeled

Geometry
• Describe sizes, positions, and orientations of shapes under informal transformations such as flips, turns, slides, and scaling
• Draw geometric objects with specified properties, such as side lengths or angle measures
• Use visual tools such as networks to represent and solve problems
• Use geometric models to represent and explain numerical and algebraic relationships
• Recognize and apply geometric ideas and relationships in areas outside the mathematics classroom, such as art, science, and everyday life
• Use geometric models to gain insights into, and answer questions in, other areas of mathematics
• Use geometric ideas to solve problems in, and gain insights into, other disciplines and other areas of interest such as art and architecture

Measurement
• Understand, select, and use units of appropriate size and type to measure angles, perimeter, area, surface area, and volume
• Use common benchmarks to select appropriate methods for estimating measurements
• Select and apply techniques and tools to accurately find length, area, volume, and angle measures to appropriate levels of precision
• Develop and use formulas to determine the circumference of circles and the area of triangles, parallelograms, trapezoids, and circles and develop strategies to find the area of more-complex shapes
• Solve problems involving scale factors, using ratio and proportion
• Solve simple problems involving rates and derived measurements for such attributes as velocity and density
• Make decisions about units and scales that are appropriate for problem situations involving measurement
• Analyze precision, accuracy, and approximate error in measurement situations
• Apply informal concepts of successive approximation, upper and lower bounds, and limit in measurement situations

Data Analysis and Probability
• Find, use, and interpret measures of center and spread, including mean and interquartile range

Problem Solving
• Build new mathematical knowledge through problem solving
• Solve problems that arise in mathematics and in other contexts
• Apply and adapt a variety of appropriate strategies to solve problems
• Monitor and reflect on the process of mathematical problem solving

Reasoning and Proof
• Develop and evaluate mathematical arguments and proofs

Communication
• Communicate their mathematical thinking coherently and clearly to peers, teachers, and others
• Analyze and evaluate the mathematical thinking and strategies of others
• Use the language of mathematics to express mathematical ideas precisely

Connections
• Recognize and use connections among mathematical ideas
• Understand how mathematical ideas interconnect and build on one another to produce a coherent whole
• Recognize and apply mathematics in contexts outside of mathematics

Representation
• Create and use representations to organize, record, and communicate mathematical ideas
• Select, apply, and translate among mathematical representations to solve problems
• Use representations to model and interpret physical, social, and mathematical phenomena

NRC Science Standards

Inquiry
• Use appropriate tools and techniques to gather, analyze and interpret data
• Develop descriptions, explanations, predictions, and models using evidence
• Think critically and logically to make the relationships between evidence and explanations
• Recognize and analyze alternative explanations and predictions
• Communicate scientific procedures and explanations
• Use mathematics in all aspects of scientific inquiry
• Use technology and mathematics to improve investigations and communications
• Communicate and defend a scientific argument

Abilities of Technological Design
• Identify appropriate problems for technological design.
• Design a solution or product.
• Evaluate completed technological designs or products.
• Communicate the process of technological design.

UNDERSTANDINGS ABOUT SCIENCE AND TECHNOLOGY

Common Core Math Standards

K.CC.3 Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects).

K.CC.7 Compare two numbers between 1 and 10 presented as written numerals.

K.G.2 Correctly name shapes regardless of their orientations or overall size.

K.G 4. Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length).

K.G.5 Compose simple shapes to form larger shapes. For example, "Can you join these two triangles with full sides touching to make a rectangle?"

1.MD.3 Tell and write time in hours and half-hours using analog and digital clocks.

1.MD.2 Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.

2.MD.7 Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.

3.MD.5 Recognize area as an attribute of plane figures and understand concepts of area measurement.
 a. A square with side length 1 unit, called “a unit square,” is said to have “one square unit” of area, and can be used to measure area.
 b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.

4.G.3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.

• Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.
• Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
Standards for Mathematical Practices integration with MEAs

<table>
<thead>
<tr>
<th>Mathematical Practice</th>
<th>How it occurs in MEAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Make sense of problems and persevere in solving them.</td>
<td>As participants work through iterations of their models they continue to gain new insights into ways to use mathematics to develop their models. The structure of MEAs allows for participants to stay engaged and to have sustained problem solving experiences.</td>
</tr>
<tr>
<td>2. Reason abstractly and quantitatively</td>
<td>MEAs allow participants to both contextualize, by focusing on the real world context of the situation, and decontextualize by representing a situation symbolically.</td>
</tr>
<tr>
<td>3. Construct viable arguments and critique the reasoning of others.</td>
<td>Throughout MEAs while groups are working and presenting their models.</td>
</tr>
<tr>
<td>4. Model with mathematics.</td>
<td>This is the essential focus of MEAs; for participants to apply the mathematics that they know to solve problems in everyday life, society, or the workplace. This is done through iterative cycles of model construction, evaluation, and revision.</td>
</tr>
<tr>
<td>5. Use appropriate tools strategically.</td>
<td>Materials are made available for groups as they work on MEAs including graph paper, graphing calculators, computers, applets, dynamic software, spreadsheets, and measuring devices.</td>
</tr>
<tr>
<td>6. Attend to precision.</td>
<td>Precise communication is essential in MEAs and participants develop the ability to communicate their mathematical understanding through different representations including written, verbal, symbolic, graphical, pictorial, concrete, and realistic.</td>
</tr>
<tr>
<td>7. Look for and make use of structure.</td>
<td>Participants in MEAs can use their knowledge of mathematical properties and algebraic expressions to develop their solutions.</td>
</tr>
<tr>
<td>8. Look for and express regularity in repeated reasoning.</td>
<td>As participants develop their models the patterns they notice can assist in their model development.</td>
</tr>
</tbody>
</table>
'Countdown clock' at every stop: TCTA pick

The governor's nominee for Twin Cities Transportation Authority (TCTA) chief yesterday promised to make "countdown clocks" for all light-rail trains and buses a priority if she's confirmed by the state Senate tomorrow.

"We are no longer at the top of the standings as a transit system. We need to be able to bring technology into the system," nominee Hayden Barnes said at a Senate committee hearing yesterday.

She said she wants to put the clocks -- like those on the subway's L line under New York that tell riders how many minutes before the next arriving train -- in all stations and bus shelters.

She said lack of time-until-arrival signs "is simply not the way to operate a 21st-century transit system" -- noting that London has the technology in place.

"In Minneapolis/St. Paul the whole winter is long, and cold, snowy and icy, with blizzards and biting winds direct from the North Pole. No doubt the cold and snow wreaked havoc with the schedules of our transit system. But that's little comfort to the poor folks who have to shiver and shake while waiting for their bus or light-rail train,” she said.

Readiness Questions:

1. What benefit can you expect through installing the countdown clocks?

2. Generate a list of parts that you need to make a digital countdown clock.
Dear students,

My name is Ms. Harris, and I am a 2nd grade teacher in Saint Paul, MN. Yesterday, I read the article on countdown clocks for the light rail and thought that it would be good for my students to learn about how this technology will work, since many of them may have to ride the light rail. So I have decided that we will be making "a countdown clock" and putting it in our classroom as a reminder for our end-of-semester celebration event. I want the clock to count down the hours until the party, much like the clock that counts the minutes to the next light rail train.

The clock will be made with recycled electronic components, such as small light bulbs, wires, batteries, and switches. See the attached information for more on the lights. For the first step in making our clock, we need to create a model for each digit of the numeric display for the countdown clock. The model must be appropriate for displaying any number 0-9.

This is where your team comes in. We need your help to develop a design for the single digit numeric display using the light shapes on the next page. Please provide a letter and some diagrams explaining your design. Please also provide us with instructions on which bulbs to light for each digit 0-9. Also, make sure you explain all of your thought processes and reasons so that if we want to design a display for other things, such as the alphabet, we will know what you did.

We are looking forward to hearing from you.

Sincerely,

Ms. Harris
Light Bulbs

Our class will have these shapes of lights:

1)

2)

© 2010 University of Minnesota
OBSERVATION FORM FOR TEACHER - Countdown Clock MEA

Team: ________________________

STEM (Science, Technology, Engineering, & Mathematics) Concepts Used:
What STEM concepts and skills did the students use to solve the problem?

Team Interactions:
How did the students interact within their team or share insights with each other?

Data Organization & Problem Perspective:
How did the students organize the problem data? How did the students interpret the task? What perspective did they take?

Tools:
What tools did the students use? How did they use these tools?

Miscellaneous Comments about the team functionality or the problem:

Cycles of Assessment & Justification:
How did the students question their problem-solving processes and their results? How did they justify their assumptions and results? What cycles did they go through?
PRESENTATION FORM – Countdown Clock MEA

Name___________________________________

While the presentations are happening, choose TWO teams to evaluate. Look for things that you like about their solution and/or things that you would change in their solution. You are not evaluating their style of presenting. For example, don’t write, “They should have organized their presentation better.” Evaluate their solution only.

Team ____________________________

What I liked about their solution:

What I didn’t like about their solution:

Team ____________________________

What I liked about their solution:

What I didn’t like about their solution:

After seeing the other presentations, how would you change your solution? If you would not change your solution, give reasons why your solution does not need changes.
STUDENT REFLECTION FORM – Countdown Clock MEA

Name ____________________________ Date ____________________________

1. What mathematical or scientific concepts and skills (e.g. ratios, proportions, forces, etc.) did you use to solve this problem?

2. How well did you understand the concepts you used?
Not at all A little bit Some Most of it All of it

Explain your choice:

3. How well did your team work together? How could you improve your teamwork?

4. Did this activity change how you think about mathematics?