TOPIC
Mathematical connections and Problem Solving

KEY QUESTION
How can students use existing data on calories burned per minute based on several speeds and inclines of a treadmill to make a general procedure for predicting the calories burned per minute for any speed or angle of incline?

LEARNING GOALS
Students will:
• Using different type of background information (e.g. newspaper articles and charts) to create a mathematical formula as a general procedure that predict how many %
grade of walking on a treadmill in response to lose how many weights.
• Consider how to use and exclude data.
• Making decisions about whether or not a solution meets the need of a client.
• Communicate the solution clearly to the client.

GUIDING DOCUMENTS
This activity has the potential to address many mathematics standards. Please see pages 4-6 for a complete list of mathematics standards.

RECOMMENDED SUPPLIES FOR ALL MODEL-ELICITING ACTIVITIES
It is recommended to have all of these supplies in a central location in the room. It is recommended to let the students know that they are available, but not to encourage them to use anything in particular.

• Overhead transparencies and transparency markers/pens, whiteboards and markers, posterboards, or other presentation tools such as a document camera.
• Calculators
• Rulers, scissors, tape
• Markers, colored pencils, pencils
• Construction paper, graph paper, lined paper
• Paper towels or tissues (for cleaning transparencies)
• Manila folders or paper clips for collecting the students’ work
• Optional: Computers with programs such as Microsoft Word and Excel

WHAT ARE MODEL-ELICITING ACTIVITIES (MEAs)?
Model-Eliciting Activities are problem activities explicitly designed to help students develop conceptual foundations for deeper and higher order ideas in mathematics, science, engineering, and other disciplines. Each task asks students to mathematically interpret a complex real-world situation and requires the formation of a mathematical description, procedure, or method for the purpose of making a decision for a realistic client. Because teams of students are producing a description, procedure, or method (instead of a one-word or one-number answer), students’ solutions to the task reveal explicitly how they are thinking about the given situation.

THE Walking Works Wonders MEA CONSISTS OF FOUR COMPONENTS:
1) Newspaper article: Students individually read the newspaper article to become familiar with the context of the problem. This handout is on page 7.
2) Readiness questions/Making snowflake by following the old instruction: Students individually answer these reading comprehension questions about the newspaper article to become even more familiar with the context and beginning thinking about the problem. This handout is on page 8.
3) Problem statement/Making snowflake to create a new set of instruction: In teams of three or four, students work on the problem statement for 45 – 90 minutes. This time range depends on the amount of self-reflection and
revision you want the students to do. It can be shorter if you are looking for students’ first thoughts, and can be longer if you expect a polished solution and well-written letter. The handouts are on pages 9-10.

4) **Process of sharing solutions:** Each team writes their solution in a letter or memo to the client. Then, each team presents their solution to the class. Whole class discussion is intermingled with these presentations to discuss the different solutions, the mathematics involved, and the effectiveness of the different solutions in meeting the needs of the client.

In totality, each MEA takes approximately 2-3 class periods to implement, but can be shortened by having students do the individual work during out-of-class time. The Presentation Form can be useful and is explained on page 4 and found on page 12.

RECOMMENDED PROGRESSION OF THE Walking Works Wonders MEA

While other implementation options are possible for MEAs, it is recommended that the MEA be implemented in a cooperative learning format. Numerous research studies have proven cooperative learning to be effective at improving student achievement, understanding, and problem solving skills. In this method students will complete work individually (Newspaper article and readiness questions; as well as initial thoughts on the problem statement) and then work together as a group. This is important because brainstorming works best when students have individual time to think before working as a group. Students can be graded on both their individual and group contributions. Social skills’ discussion at the beginning of the MEA and reflection questions at the end of the MEA are also essential aspects of cooperative learning.

Social Skills (3 - 5 minutes)

Students must be taught how to communicate and work well in groups. Several social skills that are essential to group work are decision-making, asking questions, and communicating and listening. The teacher can show part of a YouTube video and discuss aspects of these skills before beginning the MEA.

(http://www.youtube.com/user/flowmathematics)

Newspaper Article and Readiness Questions:

The purpose of the newspaper article and the readiness questions is to introduce the students to the context of the problem.

(10 minutes): Give the article and the questions to the students the day before for homework. Then, in the next class, discuss as a class the answers to the readiness questions before beginning to discuss the problem statement.

Problem Statement:

You may want to read the problem statement to the students and then identify as a class: a) **the client that the students are working for** and b) **the product that the students are being asked to produce**. Once you have addressed the points above, allow the students to work on the problem statement. Let the students know that they will be sharing their solution to the rest of the class. Tell students that you will randomly pick a group member to present for each group. Tell the students that they need to make sure that everyone understands their group’s solution so they need to be sure to work together well. The group member who will present can be picked by assigning each group member a number.

Working on the Problem Statement (35-50 minutes): Place the students in teams of three or four. Students should begin to work by sharing their initial ideas for solving the problem. If you already use teams in your classroom, it is best if you continue with these same teams since results for MEAs are better when the students have already developed a working relationship with their team members. If you do not use teams in your classroom and classroom management is an issue, the teacher may form the teams. If classroom management is not an issue, the students may form their own teams. You may
want to have the students choose a name for their team to promote unity.

Teachers’ role: As they work, your role should be one of a facilitator and observer. Avoid questions or comments that steer the students toward a particular solution. Try to answer their questions with questions so that the student teams figure out their own issues. Also during this time, try to get a sense of how the students are solving the problem so that you can ask them questions about their solutions during their presentations.

Presentations of Solutions (15-30 minutes): The teams present their solutions to the class. There are several options of how you do this. Doing this electronically or assigning students to give feedback as out-of-class work can lessen the time spent on presentations. If you choose to do this in class, which offers the chance for the richest discussions, the following are recommendations for implementation. Each presentation typically takes 3 – 5 minutes. You may want to limit the number of presentations to five or six or limit the number of presentations to the number of original (or significantly different) solutions to the MEA.

Before beginning the presentations, encourage the other students to not only listen to the other teams’ presentations but also to a) *try to understand the other teams’ solutions* and b) *consider how well these other solutions meet the needs of the client.* You may want to offer points to students that ask ‘good’ questions of the other teams, or you may want students to complete a reflection page (explanation – page 9-10, form – page 13) in which they explain how they would revise their solution after hearing about the other solutions. As students offer their presentations and ask questions, whole class discussions should be intermixed with the presentations in order to address conflicts or differences in solutions. When the presentations are over, collect the student teams’ memos/letters, presentation overheads, and any other work you would like to look over or assess.

ASSESSMENT OF STUDENTS’ WORK
You can decide if you wish to evaluate the students’ work. If you decide to do so, you may find the following Assessment Guide Rubric helpful:

Performance Level Effectiveness: Does the solution meet the client’s needs?

Requires redirection: The product is on the wrong track. Working longer or harder with this approach will not work. The students may need additional feedback from the teacher.

Requires major extensions or refinements: The product is a good start toward meeting the client’s needs, but a lot more work is needed to respond to all of the issues.

Requires editing and revisions: The product is on a good track to be used. It still needs modifications, additions or refinements.

Useful for this specific data given, but not shareable and reusable OR Almost shareable and reusable but requires minor revisions: No changes will be needed to meet the immediate needs of the client for this set of data, but not generalized OR Small changes needed to meet the generalized needs of the client.

Share-able or re-usable: The tool not only works for the immediate solution, but it would be easy for others to modify and use in similar situations. OR The solution goes above and beyond meeting the immediate needs of the client.

IMPLEMENTING AN MEA WITH STUDENTS FOR THE FIRST TIME
You may want to let students know the following about MEAs:

- MEAs are longer problems; there are no immediate answers. Instead, students should expect to work on the problem and gradually
revise their solution over a period of 45 minutes to an hour.

- MEAs often have more than one solution or one way of thinking about the problem.
- Let the students know ahead of time that they will be presenting their solutions to the class. Tell them to prepare for a 3-5 minute presentation, and that they may use overhead transparencies or other visuals during their presentation.
- Let the students know that you won’t be answering questions such as “Is this the right way to do it?” or “Are we done yet?” You can tell them that you will answer clarification questions, but that you will not guide them through the MEA.
- Remind students to make sure that they have returned to the problem statement to verify that they have fully answered the question.
- If students struggle with writing the letter, encourage them to read the letter out loud to each other. This usually helps them identify omissions and errors.

OBSERVING STUDENTS AS THEY WORK ON THE Walking Works Wonders MEA
You may find the Observation Form (page 11) useful for making notes about one or more of your teams of students as they work on the MEA. We have found that the form could be filled out “real-time” as you observe the students working or sometime shortly after you observe the students. The form can be used to record observations about what concepts the students are using, how they are interacting as a team, how they are organizing the data, what tools they use, what revisions to their solutions they may make, and any other miscellaneous comments.

PRESENTATION FORM (Optional)
As the teams of students present their solutions to the class, you may find it helpful to have each student complete the presentation form on page 12. This form asks students to evaluate and provide feedback about the solutions of at least two teams. It also asks students to consider how they would revise their own solution to the Meteorology Madness MEA after hearing of the other teams’ solutions.

STUDENT REFLECTION FORM
You may find the Student Reflection Form (page 13) useful for concluding the MEA with the students. The form is a debriefing tool, and it asks students to consider the concepts that they used in solving the MEA and to consider how they would revise their previous solution after hearing of all the different solutions presented by the various teams. Students typically fill out this form after the team presentations.

STANDARDS ADDRESSED
NCTM MATHEMATICS STANDARDS
Numbers and Operations:
- Work flexibly with fractions, decimals, and percents to solve problems
- Understand and use ratios and proportions to represent quantitative relationships
- Develop and analyze algorithms for computing with fractions, decimals, and integers and develop fluency in their use
- Judge the reasonableness of numerical computations and their results

Algebra
- Represent, analyze, and generalize a variety of patterns with tables, graphs, words, and, when possible, symbolic rules
- Relate and compare different forms of representation for a relationship
- Model and solve contextualized problems using various representations, such as graphs, tables, and equations
- Use symbolic algebra to represent and explain mathematical relationships
- Identify essential quantitative relationships in a situation and determine the class or classes of functions that might model the relationships
- Draw reasonable conclusions about a situation being modeled

Measurement
- Solve simple problems involving rates and derived measurements for such attributes as velocity and density
- Analyze precision, accuracy, and approximate error in measurement situations

Problem Solving
• Build new mathematical knowledge through problem solving
• Solve problems that arise in mathematics and in other contexts
• Apply and adapt a variety of appropriate strategies to solve problems
• Monitor and reflect on the process of mathematical problem solving

Reasoning and Proof
• Develop and evaluate mathematical arguments and proofs

Communication
• Communicate their mathematical thinking coherently and clearly to peers, teachers, and others
• Analyze and evaluate the mathematical thinking and strategies of others

Connections
• Recognize and use connections among mathematical ideas
• Understand how mathematical ideas interconnect and build on one another to produce a coherent whole
• Recognize and apply mathematics in contexts outside of mathematics

Representation
• Use representations to model and interpret physical, social, and mathematical phenomena

Understand patterns
• Interpret representations of functions of two variable

NRC SCIENCE STANDARDS

Inquiry
• Use appropriate tools and techniques to gather, analyze and interpret data
• Develop descriptions, explanations, predictions, and models using evidence
• Think critically and logically to make the relationships between evidence and explanations
• Recognize and analyze alternative explanations and predictions
• Communicate scientific procedures and explanations
• Use mathematics in all aspects of scientific inquiry

ABILITIES OF TECHNOLOGICAL DESIGN
• Design a solution or product
• Evaluate completed technological designs or products
• Communicate the process of technological design

UNDERSTANDINGS ABOUT SCIENCE AND TECHNOLOGY
• Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.
• Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

PERSONAL HEALTH
• Regular exercise is important to the maintenance and improvement of health. The benefits of physical fitness include maintaining healthy weight, having energy and strength for routine activities, good muscle tone, bone strength, strong heart/lung systems, and improved mental health. Personal exercise, especially developing cardiovascular endurance, is the foundation of physical fitness.

Common Core State Standards
• 5 MD-2: represent and interpret data
• 6.NS 8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
• 6. EE Represent and analyze quantitative relationships between dependent and independent variables.
9. Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d = 65t$ to represent the relationship between distance and time.
• 8.F Use functions to model relationships between quantities.
5. Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
• A-CED Create equations that describe numbers or relationships
Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
Standards for Mathematical Practices integration with MEAs

<table>
<thead>
<tr>
<th>Mathematical Practice</th>
<th>How it occurs in MEAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Make sense of problems and persevere in solving them.</td>
<td>As participants work through iterations of their models they continue to gain new insights into ways to use mathematics to develop their models. The structure of MEAs allows for participants to stay engaged and to have sustained problem solving experiences.</td>
</tr>
<tr>
<td>2. Reason abstractly and quantitatively</td>
<td>MEAs allow participants to both contextualize, by focusing on the real world context of the situation, and decontextualize by representing a situation symbolically.</td>
</tr>
<tr>
<td>3. Construct viable arguments and critique the reasoning of others.</td>
<td>Throughout MEAs while groups are working and presenting their models.</td>
</tr>
<tr>
<td>4. Model with mathematics.</td>
<td>This is the essential focus of MEAs; for participants to apply the mathematics that they know to solve problems in everyday life, society, or the workplace. This is done through iterative cycles of model construction, evaluation, and revision.</td>
</tr>
<tr>
<td>5. Use appropriate tools strategically.</td>
<td>Materials are made available for groups as they work on MEAs including graph paper, graphing calculators, computers, applets, dynamic software, spreadsheets, and measuring devices.</td>
</tr>
<tr>
<td>6. Attend to precision.</td>
<td>Precise communication is essential in MEAs and participants develop the ability to communicate their mathematical understanding through different representations including written, verbal, symbolic, graphical, pictorial, concrete, and realistic.</td>
</tr>
<tr>
<td>7. Look for and make use of structure.</td>
<td>Participants in MEAs can use their knowledge of mathematical properties and algebraic expressions to develop their solutions.</td>
</tr>
<tr>
<td>8. Look for and express regularity in repeated reasoning.</td>
<td>As participants develop their models the patterns they notice can assist in their model development.</td>
</tr>
</tbody>
</table>
Walking Works Wonders

FAIRPORT, NY – This year a group of seniors at East Rochester High School are taking a new approach to their final semester of physical education. The class, which typically focuses on individual physical fitness and nutrition goals, will aim to include students from every grade level and even members of the community.

The idea came from a class discussion on which students were deciding how much time a week should be devoted to exercise. Many students felt that they needed at least two to three hours of exercise weekly, but found it difficult to find that much free time outside of school and other responsibilities. A number of students were also unclear about which kinds of exercise were most beneficial.

The discussion then turned to walking as a simple form of exercise that anyone could do at anytime. “People don’t realize that walking can be a good way to stay fit and burn calories,” says Paul Rogers, a physical education instructor at the high school.

Therefore, the students enrolled in the class have decided to organize a school and community wide 5K fun walk to promote fitness and exercise.

Abby Rowe, a senior, believes that students don’t realize that taking a daily walk is a great way for busy students to get exercise. “A lot of students think they don’t have time to exercise because of homework, clubs or work,” says Rowe. “I think that this is a great way to let them know that just by walking a little bit everyday, they can still get in some exercise.”

Students from every grade level are invited to participate in the Fun Walk as well as family members and anyone else in the community interested in getting involved in promoting physical fitness.

The student organizers hope to achieve this by letting each walker know how long it took them to complete the course as well as how many calories they burned while doing it. “There will be tables set up at the end of the course where students from the class will be calculating each participant’s information,” states Rogers.

The Fun Walk is planned for the end of next month, however, both students and the community will be seeing informational posters appearing soon.

What can you do to prepare for the Walk? “Just start by taking every opportunity to walk,” suggests senior Joe Finch. “Take the stairs instead of the elevator or walk to the grocery store. Make every step count.”
Readiness Questions

Answer these questions after reading the article.

1. Why do the students believe that the Fun Walk is a good idea?
2. Why might some students feel there is no time for exercise?
3. Why is it important both for organizers and walkers to plan ahead for the Fun Walk?
4. How do the organizers plan to promote health and fitness to students and the community?
5. Do you think a Fun Walk might be successful at your school? Why or why not?
6. If you walked for 30 minutes at 3 miles/hour, how far did you walk?
7. If you are walking at a speed of 2 miles/hour and you are burning 5 calories/minute, how far have you gone if you burned 225 calories?
Your Mission

Your class has been asked by a local health club to help solve a problem for Lisa, one of their fitness directors. Lisa has a client that wants to lose some weight by walking on a treadmill. Lisa knows that if her client can walk at a good pace at an incline for 35 min a day several times a week, her client will be happy with the weight loss. Lisa’s client has chosen to walk at a grade of 9%, and wants to know what her cal / min will be for the various speeds that she will be walking (3 to 5 mph). Lisa is using the same graph that you have on the following page. So, Lisa needs to know what the curve will look like for a 9% grade.

Your mission is twofold. First, you are to determine what the curve will look like for Lisa’s client that will be walking at a 9% grade. Second, you are to come up with a general procedure for the health club to use in the future for the clients that choose their % grade. So, your procedure must not be specific to a 9% grade. Make sure the health club can understand your explanation of the procedure well; they plan on using your procedure for future clients’ needs.
Burned Cal/Min versus Walking Speed

- level ground
- 4% grade
- 6% grade
OBSERVATION FORM FOR TEACHER- Walking Works Wonders MEA

Team: ____________________________

Math Concepts Used:
What mathematical concepts and skills did the students use to solve the problem?

Team Interactions:
How did the students interact within their team or share insights with each other?

Data Organization & Problem Perspective:
How did the students organize the problem data? How did the students interpret the task? What perspective did they take?

Tools:
What tools did the students use? How did they use these tools?

Miscellaneous Comments about the team functionality or the problem:

Cycles of Assessment & Justification:
How did the students question their problem-solving processes and their results? How did they justify their assumptions and results? What cycles did they go through?
PRESENTATION FORM – Walking Works Wonders MEA

Name________________________

While the presentations are happening, choose TWO teams to evaluate. Look for things that you like about their solution and/or things that you would change in their solution. You are not evaluating their style of presenting. For example, don’t write, “They should have organized their presentation better.” Evaluate their solution only.

Team ______________________

What I liked about their solution:

What I didn’t like about their solution:

Team ______________________

What I liked about their solution:

What I didn’t like about their solution:

After seeing the other presentations, how would you change your solution? If you would not change your solution, give reasons why your solution does not need changes.
STUDENT REFLECTION FORM – Walking Works Wonders MEA

Name ___________________________ Date __________________________

1. What mathematical or scientific concepts and skills (e.g. ratios, proportions, forces, etc.) did you use to solve this problem?

2. How well did you understand the concepts you used?

 Not at all A little bit Some Most of it All of it

 Explain your choice:

3. How well did your team work together? How could you improve your teamwork?

4. Did this activity change how you think about mathematics?